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Low-Reynolds-number flows

Creeping flow equation

In suspensions of microscopic solids of both technological and biological
interest, flows are often characterized by very small Reynolds number, so
that viscous effects are dominant.

Low-Reynolds-number linearization of the Navier–Stokes equation:

div u = 0 ,

ρ
∂u

∂t
= −∇p + µ∆u + ρb ,

with p the pressure field, u the velocity field, ρ > 0 the constant and
homogeneous mass density, µ > 0 the dynamic viscosity, and ρb the
volumetric force density.
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Low-Reynolds-number flows

Classical slender-body theory

The basic tool used to construct solutions to the steady Stokes problem is
the Stokeslet, that is the Green’s function for the Stokes operator in R3.
Its classical expression is given by

ps(x) =
h · x

4π|x|3
,

s(x) = S(x)h ,

where h ∈ R3 is any fixed vector, and S is the Oseen tensor, with
components

Sij(x) :=
δij

8πµ|x|
+

xixj
8πµ|x|3

,

where δij is Kronecker’s symbol.
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Low-Reynolds-number flows

Classical slender-body theory

Solution by convolution:

u(x) := ρ

∫
R3

S(x− x′)b(x′) dL3(x′) .

Classical ansatz for uniformly translating rigid rod:

ρb(x) = f(x1)χ[−a,a](x1)δ(x2)δ(x3) .

But the rod is deformed during the motion . . .
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Low-Reynolds-number flows

Computational issues

Even though the force densities are concentrated on lines, the microscopic
bodies are necessarily three-dimensional, because the Oseen tensor S is
divergent at the origin.

Computational techniques has to face:

moving boundaries;

number of particles much greater than 1, in realistic situations;

approximation of unsteady flows.

Moreover, non-linear inertial effects must be neglected.
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Dimensional reduction and regularization

Hyperviscosity and effective thickness

The hyperviscous Stokes equation, for a steady flow, is

∇p − µ∆u + ξ∆∆u = ρb ,

where the additional parameter ξ > 0 is called hyperviscosity.

We introduce an effective thickness L > 0, and set ξ = µL2.

The dimensional reduction consists in the approximation of slender
three-dimensional bodies with lower-dimensional entities, and L replaces
the characteristic size of the body along the dimensions that are shrunken
to zero in the slender-body limit.
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Dimensional reduction and regularization

Advantages

Analytical:

Existence and uniqueness of regular solutions.

The continuity of the velocity field permits to model adherence to
lower-dimensional objects.

The hyperviscous solution converges, in the limit L→ 0, to a suitable
solution of the Navier-Stokes equation.

Computational:

Simplification of the geometries.

Moving boundaries replaced by a time-dependent constraint on
function spaces.

Reduction of instabilities related to singularities of the flow.

Giulio G. Giusteri (Univ. Cattolica) A new slender-body theory for viscous flows Montecatini 2012 8 / 11



Flow past rigid bodies

Resistance problems vs Mobility problems

In resistance problems, the velocities of the immersed objects are assigned
and the goal is to determine the force required to sustain the motion.

In mobility problems, the forces acting on the system are prescribed and
the objective is to determine the resulting velocity field. The solution can
be found by convolution with the regularized Oseen tensor

Zij(x) :=
δij

8πµ|x|

[
1− 2e−

|x|
L − 2L

|x|
e−

|x|
L − 2L2

|x|2
(

e−
|x|
L − 1

)]
+

xixj
8πµ|x|3

[
1 + 2e−

|x|
L +

6L

|x|
e−

|x|
L +

6L2

|x|2
(

e−
|x|
L − 1

)]
.

But we must know the reactive forces within the body!
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Ongoing work

Flow past elastic bodies

The challenge: multiscale and multiphysics interaction.

The fluid-structure interaction requires new analytical techniques,
because it cannot be modeled using boundary conditions.

With more than one immersed body, flows become unsteady.

(In)compatibility between equations of different nature.

Three-dimensional environment.

The goal: freely swimming filaments.

Combination of resistance and mobility problems.

Non-trivial elastic behavior of the slender bodies.
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